Rankine to Kelvin (°R to K)

Rankine to Kelvin (°R to K) conversion calculator

Kelvin to Rankine (K to °R) (Swap units)

0°R = -0K

Accuracy

Note: You can increase or decrease the accuracy of this answer by selecting the number of significant figures required from the options above the result.

Rankine to Kelvin calculation

Kelvin = ((Rankine - 491.67) / 1.79999999) + 273.15

Kelvin = ((0 - 491.67) / 1.8) + 273.15

Kelvin = (-491.67 / 1.8) + 273.15

Kelvin = -273.15 + 273.15

Kelvin = -0

Rankine to Kelvin (ºR to K) formula

Kelvin = ((Rankine - 491.67) / 1.79999999) + 273.15

 

Converting from Rankine to Kelvin

Both Rankine and Kelvin are temperature scales used in scientific and engineering applications. While Rankine is primarily used in the United States, Kelvin is the standard unit of temperature in the International System of Units (SI).

To convert from Rankine to Kelvin, you need to subtract 491.67 from the given temperature in Rankine and then multiply the result by 5/9. Finally, add 273.15. This conversion factor accounts for the difference in the zero points of the two scales.

For example, let's say we have a temperature of 500 Rankine. To convert this to Kelvin, we subtract 491.67 from 500, which gives us 8.33. Then, we multiply 8.33 by 5/9, giving approximately 4.627. Finally add 273.15 to the value to get 277.77K.

Converting between Rankine and Kelvin is essential when working with temperature data in different systems. It allows for seamless communication and compatibility between different scientific disciplines and regions of the world.

About Rankine

Rankine is a unit of temperature measurement commonly used in engineering and thermodynamics. It is named after the Scottish engineer and physicist William John Macquorn Rankine, who made significant contributions to the field of thermodynamics in the 19th century. The Rankine scale is an absolute temperature scale, similar to the Kelvin scale, but with a different zero point.

The Rankine scale is based on the Fahrenheit scale, with the zero point set at absolute zero (-459.67°F). This means that the Rankine scale has the same size degree as the Fahrenheit scale, but starts at a different point. To convert between Rankine and Celsius, one must first convert from Celsius to Kelvin by adding 273.15, and then convert from Kelvin to Rankine by multiplying by 1.8. The formula for this conversion is: Rankine = (Celsius + 273.15) × 1.8.

While the Rankine scale is not commonly used in everyday life, it is widely used in engineering and thermodynamics, particularly in the United States. It is often used in calculations involving temperature differentials, such as in the study of heat transfer and energy systems. Understanding the Rankine scale and its conversion to Celsius is important for engineers and scientists working in these fields, as it allows for accurate and consistent temperature measurements and calculations.

About Kelvin

Kelvin, also known as the Kelvin scale, is a unit of measurement for temperature in the International System of Units (SI). It is named after the Scottish physicist William Thomson, 1st Baron Kelvin, who made significant contributions to the field of thermodynamics. The Kelvin scale is based on the absolute zero point, which is the lowest possible temperature where all molecular motion ceases.

Unlike most other temperature scales, Kelvin does not use degrees. Instead, it measures temperature in kelvins (K). The Kelvin scale is often used in scientific and engineering applications, particularly in fields like physics, chemistry, and meteorology. It is considered an absolute temperature scale because it starts from absolute zero, which is equivalent to -273.15 degrees Celsius or -459.67 degrees Fahrenheit.

One of the key advantages of the Kelvin scale is that it allows for precise and consistent measurements of temperature. It is particularly useful in scientific research and calculations involving gases, as it directly relates to the kinetic energy of molecules. Additionally, the Kelvin scale is used in many scientific formulas and equations, making it an essential tool for scientists and engineers worldwide.

 

Rankine to Kelvin table

Starting value
Increment
Accuracy
Rankine
Kelvin
0°R
0.00000K
1°R
0.55556K
2°R
1.11111K
3°R
1.66667K
4°R
2.22222K
5°R
2.77778K
6°R
3.33333K
7°R
3.88889K
8°R
4.44444K
9°R
5.00000K
10°R
5.55556K
11°R
6.11111K
12°R
6.66667K
13°R
7.22222K
14°R
7.77778K
15°R
8.33333K
16°R
8.88889K
17°R
9.44444K
18°R
10.00000K
19°R
10.55556K
Rankine
Kelvin
20°R
11.11111K
21°R
11.66667K
22°R
12.22222K
23°R
12.77778K
24°R
13.33333K
25°R
13.88889K
26°R
14.44444K
27°R
15.00000K
28°R
15.55556K
29°R
16.11111K
30°R
16.66667K
31°R
17.22222K
32°R
17.77778K
33°R
18.33333K
34°R
18.88889K
35°R
19.44444K
36°R
20.00000K
37°R
20.55556K
38°R
21.11111K
39°R
21.66667K
Rankine
Kelvin
40°R
22.22222K
41°R
22.77778K
42°R
23.33333K
43°R
23.88889K
44°R
24.44444K
45°R
25.00000K
46°R
25.55556K
47°R
26.11111K
48°R
26.66667K
49°R
27.22222K
50°R
27.77778K
51°R
28.33333K
52°R
28.88889K
53°R
29.44444K
54°R
30.00000K
55°R
30.55556K
56°R
31.11111K
57°R
31.66667K
58°R
32.22222K
59°R
32.77778K
Rankine
Kelvin
60°R
33.33333K
61°R
33.88889K
62°R
34.44444K
63°R
35.00000K
64°R
35.55556K
65°R
36.11111K
66°R
36.66667K
67°R
37.22222K
68°R
37.77778K
69°R
38.33333K
70°R
38.88889K
71°R
39.44444K
72°R
40.00000K
73°R
40.55556K
74°R
41.11111K
75°R
41.66667K
76°R
42.22222K
77°R
42.77778K
78°R
43.33333K
79°R
43.88889K